Arquitetura do sistema de comércio algorítmico.
Anteriormente, neste blog, escrevi sobre a arquitetura conceitual de um sistema de negociação algorítmico inteligente, bem como os requisitos funcionais e não funcionais de um sistema de negociação algorítmica de produção. Desde então, criei uma arquitetura de sistema que, acredito, poderia satisfazer esses requisitos arquitetônicos. Nesta publicação, descreverei a arquitetura seguindo as diretrizes dos padrões ISO / IEC / IEEE 42018 e padrão de descrição da arquitetura de engenharia de software. De acordo com este padrão, uma descrição de arquitetura deve:
Contém várias visualizações arquitetônicas padronizadas (por exemplo, em UML) e Mantenha a rastreabilidade entre decisões de design e requisitos arquitetônicos.
Definição de arquitetura de software.
Ainda não há consenso quanto ao que é uma arquitetura do sistema. No contexto deste artigo, é definido como a infra-estrutura dentro da qual os componentes do aplicativo que satisfazem os requisitos funcionais podem ser especificados, implantados e executados. Os requisitos funcionais são as funções esperadas do sistema e seus componentes. Os requisitos não funcionais são medidas através das quais a qualidade do sistema pode ser medida.
Um sistema que satisfaça plenamente seus requisitos funcionais ainda pode não atender às expectativas se os requisitos não funcionais forem deixados insatisfeitos. Para ilustrar este conceito, considere o seguinte cenário: um sistema de negociação algorítmico que você acabou de comprar / construir faz excelentes decisões de negociação, mas é completamente inoperacional com os sistemas de gestão e contabilidade de risco das organizações. Esse sistema atenderia às suas expectativas?
Arquitetura conceitual.
Uma visão conceitual descreve conceitos e mecanismos de alto nível que existem no sistema no mais alto nível de granularidade. Nesse nível, o sistema de negociação algorítmica segue uma arquitetura orientada a eventos (EDA) dividida em quatro camadas e dois aspectos arquitetônicos. Para cada camada e referência de aspecto arquiteturas e padrões são usados. Padrões arquitetônicos são estruturas comprovadas e genéricas para alcançar requisitos específicos. Os aspectos arquitetônicos são preocupações transversais que abrangem múltiplos componentes.
Arquitetura orientada a eventos - uma arquitetura que produz, detecta, consome e reage a eventos. Os eventos incluem movimentos do mercado em tempo real, eventos ou tendências complexas e eventos comerciais, e. enviando um pedido.
Este diagrama ilustra a arquitetura conceitual do sistema de negociação algorítmica.
Arquiteturas de referência.
Para usar uma analogia, uma arquitetura de referência é semelhante aos planos para uma parede de suporte de carga. Esta impressão azul pode ser reutilizada para projetos de construção múltipla independentemente do edifício que está sendo construído, pois satisfaz um conjunto de requisitos comuns. Da mesma forma, uma arquitetura de referência define um modelo contendo estruturas genéricas e mecanismos que podem ser usados para construir uma arquitetura de software concreta que satisfaça requisitos específicos. A arquitetura para o sistema de negociação algorítmica usa uma arquitetura baseada em espaço (SBA) e um controlador de exibição de modelo (MVC) como referências. São também utilizadas boas práticas, como o armazenamento de dados operacionais (ODS), o padrão de transformação e carregamento de extratos (ETL) e um data warehouse (DW).
Controle de exibição de modelo - um padrão que separa a representação de informações da interação do usuário com ela. Arquitetura baseada em espaço - especifica uma infra-estrutura onde as unidades de processamento acopladas vagamente interagem entre si através de uma memória associativa compartilhada chamada espaço (mostrado abaixo).
Visão estrutural.
A visão estrutural de uma arquitetura mostra os componentes e subcomponentes do sistema de negociação algorítmica. Ele também mostra como esses componentes são implantados em infra-estrutura física. Os diagramas UML utilizados nesta visão incluem diagramas de componentes e diagramas de implantação. Abaixo está a galeria dos diagramas de implantação do sistema de negociação algorítmico geral e as unidades de processamento na arquitetura de referência SBA, bem como diagramas de componentes relacionados para cada uma das camadas.
Diagrama de componentes de processamento de comerciantes / eventos automatizados Fonte de dados e diagrama de componente de camada de pré-processamento Diagrama de componente de interface de usuário baseado em MVC.
Táticas arquitetônicas.
De acordo com o instituto de engenharia de software, uma tática arquitetônica é um meio de satisfazer um requisito de qualidade, manipulando algum aspecto de um modelo de atributo de qualidade através de decisões de design arquitetônico. Um exemplo simples usado na arquitetura do sistema de negociação algorítmica é 'manipular' um armazenamento de dados operacional (ODS) com um componente de consulta contínua. Este componente analisaria continuamente o ODS para identificar e extrair eventos complexos. As seguintes táticas são usadas na arquitetura:
O padrão do disruptor nas filas de eventos e pedidos Memória compartilhada para as filas de eventos e pedidos Linguagem de consulta contínua (CQL) na filtragem de dados ODS com o padrão de design do filtro em dados recebidos Algoritmos de evitação de congestionamentos em todas as conexões de entrada e saída Gerenciamento de filas ativas (AQM ) e notificação de congestionamento explícito Recursos de computação de mercadorias com capacidade de atualização (escalável) Redundância ativa para todos os pontos de falha únicos Indicação e estruturas de persistência otimizadas no ODS Programe backup de dados regulares e scripts de limpeza para ODS Histórico de transações em todos os bancos de dados Súmrios para todos Ordens para detectar falhas Anotar eventos com timestamps para ignorar eventos "obsoletos". Regras de validação de pedidos, por exemplo, quantidades de comércio máximo Componentes de comerciante automatizado usam um banco de dados em memória para análise Autenticação em dois estágios para interfaces de usuário conectando-se à ATs Criptografia em interfaces de usuário e conexões ao padrão de design ATs Observer para que o MVC gerencie visualizações.
A lista acima é apenas algumas decisões de design que identifiquei durante o projeto da arquitetura. Não é uma lista completa de táticas. À medida que o sistema está sendo desenvolvido, táticas adicionais devem ser empregadas em múltiplos níveis de granularidade para atender aos requisitos funcionais e não funcionais. Abaixo estão três diagramas que descrevem o padrão de design do disruptor, o padrão de design do filtro e o componente de consulta contínua.
Visão comportamental.
Essa visão de uma arquitetura mostra como os componentes e camadas devem interagir um com o outro. Isso é útil ao criar cenários para testar projetos de arquitetura e para entender o sistema de ponta a ponta. Essa visão consiste em diagramas de seqüência e diagramas de atividades. Diagramas de atividades que mostram o processo interno do sistema de negociação algorítmica e como os comerciantes devem interagir com o sistema de negociação algorítmica são mostrados abaixo.
Tecnologias e estruturas.
O passo final na concepção de uma arquitetura de software é identificar potenciais tecnologias e estruturas que poderiam ser utilizadas para realizar a arquitetura. Como princípio geral, é melhor aproveitar as tecnologias existentes, desde que satisfaçam adequadamente os requisitos funcionais e não funcionais. Uma estrutura é uma arquitetura de referência realizada, e. JBoss é uma estrutura que realiza a arquitetura de referência JEE. As seguintes tecnologias e frameworks são interessantes e devem ser consideradas na implementação de um sistema de negociação algorítmico:
CUDA - NVidia tem uma série de produtos que suportam modelagem de finanças computacionais de alto desempenho. Pode-se conseguir até 50x melhorias no desempenho ao executar simulações Monte Carlo na GPU em vez da CPU. Rio Apache - Rio é um kit de ferramentas usado para desenvolver sistemas distribuídos. Ele foi usado como uma estrutura para a construção de aplicativos com base no padrão SBA Apache Hadoop - no caso de registro invasivo ser um requisito, então o uso do Hadoop oferece uma solução interessante para o problema dos grandes dados. O Hadoop pode ser implantado em um ambiente em cluster que suporta tecnologias CUDA. AlgoTrader - uma plataforma de negociação algorítmica de código aberto. O AlgoTrader poderia ser implantado no lugar dos componentes do comerciante automatizado. FIX Engine - um aplicativo autônomo que aceita os protocolos do Financial Information Exchange (FIX), incluindo FIX, FAST e FIXatdl.
Embora não seja uma tecnologia ou uma estrutura, os componentes devem ser criados com uma interface de programação de aplicativos (API) para melhorar a interoperabilidade do sistema e seus componentes.
Conclusão.
A arquitetura proposta foi projetada para satisfazer requisitos muito genéricos identificados para sistemas de negociação algorítmica. Geralmente, os sistemas de negociação algorítmica são complicados por três fatores que variam de acordo com cada implementação:
Dependências em sistemas empresariais e de intercâmbio externos Requisitos não funcionais desafiadores e restrições arquitetônicas em evolução.
Por conseguinte, a arquitetura de software proposta deve ser adaptada caso a caso para satisfazer requisitos organizacionais e regulatórios específicos, bem como para superar restrições regionais. A arquitetura do sistema de negociação algorítmica deve ser vista como apenas um ponto de referência para indivíduos e organizações que desejam projetar seus próprios sistemas de negociação algorítmica.
Para uma cópia completa e fontes usadas, baixe uma cópia do meu relatório. Obrigado.
História anterior.
Requisitos do sistema de negociação algorítmica.
Próxima História.
Otimização de portfólio usando otimização de enxertia de partículas.
Excelente visão geral, e um bom começo na arquitetura. Sua conclusão foi adequada, e apontou por que os sistemas de software de negociação algorítmica requerem back-testing e ajustes constantes para mantê-los relevantes. Boa leitura!
1 de fevereiro de 2018.
Quando os dados de commodities ou renda fixa são imprecisos ou lentos em receber, os modelos podem ter dificuldade em calcular especialmente no espaço de um evento Black Swann.
Muito obrigado por este artigo. Estive pensando em AI em finanças desde o final da década de 90 e, finalmente, as tecnologias e as APIs estão comumente disponíveis. Seu artigo e blog são uma ótima ajuda para fazer esses primeiros passos para tornar realidade os sonhos dos anos anteriores. Muito obrigado e boa sorte em seus novos empreendimentos!
Mantenha-me atualizado no seu progresso. Estou muito interessado. Obrigado.
Envie um comentário.
Cancelar resposta.
Siga a Turing Finance.
Turing Finance Mailing List.
Amigos da Turing Finance.
Quantocracy é o melhor agregador de blog de finanças quantitativas com links para novas análises postadas todos os dias.
NMRQL é o fundo hedge quantitativo de que sou parte. Usamos a aprendizagem de máquinas para tentar vencer o mercado.
Construindo Sistemas Automatizados de Negociação.
1ª edição.
Com uma Introdução ao Visual C ++ 2005.
Acesso institucional.
Secure Checkout.
Frete grátis.
Nenhuma ordem mínima.
Índice.
Capítulo 1 Introdução.
Seção I: Introdução ao Visual C ++ 2005.
Capítulo 2 O quadro.
Capítulo 3 Referências de rastreamento.
Capítulo 4 Classes e Objetos.
Capítulo 5 Tipos de referência.
Capítulo 6 Tipos de valor.
Capítulo 7 Objetos não gerenciados.
Capítulo 8 Composição.
Capítulo 9 Propriedades.
Capítulo 10 Estruturas e enumerações.
Capítulo 11 Herança.
Capítulo 12 Conversão e fundição.
Capítulo 13 Sobrecarga do operador.
Capítulo 14 Delegados e Eventos.
Capítulo 15 Arrays.
Capítulo 16 Gerando números aleatórios.
Capítulo 17 Tempo e Temporizadores.
Capítulo 18 Fluxos de entrada e saída.
Capítulo 19 Manipulação de Exceções.
Capítulo 20 Coleções.
Capítulo 21 STL / STL.
Capítulo 22 DataSets.
Capítulo 23 Conexão a bancos de dados.
Capítulo 24 Linguagem de consulta estruturada.
Capítulo 26 Protocolo de troca de informações financeiras.
Capítulo 27 Serialização.
Capítulo 28 Serviços do Windows.
Capítulo 29 Configuração e Pacotes de Instalação.
Seção II: Concorrência.
Capítulo 30 Threading.
Capítulo 31 Classes de Sincronização.
Capítulo 32 Sockets.
Seção III: interoperabilidade e conectividade.
Capítulo 33 Marshaling.
Capítulo 34 Interiores e Pinning Pointers.
Capítulo 35 Conexão a DLLs gerenciadas.
Capítulo 36 Conectando às DLLs do Componenet Object Model (COM) com Interoperabilidade COM.
Capítulo 37 Conexão a DLLs C ++ com Serviços de Invocação de Plataforma.
Capítulo 38 Conexão ao Excel.
Capítulo 39 Conexão ao TraderAPI.
Capítulo 40 Conexão ao XTAPIConnection_Example.
Seção IV: Sistemas de Negociação Automatizada.
Capítulo 41 Building Trading Systems.
Capítulo 42 K "V Metodologia de Desenvolvimento do Sistema de Negociação.
Capítulo 43 Classes do Sistema de Negociação Automatizado.
Capítulo 44 Sistema de Análise Técnica de Rosca Única.
Capítulo 45 Padrão de Design do Produtor / Consumidor.
Capítulo 46 Multithreaded, Statistical Arbitrage System.
Descrição.
Nos próximos anos, as indústrias proprietárias de hedge funds e de negociação migrarão em grande parte para sistemas de seleção e execução de comércio automatizado. Na verdade, isso já está acontecendo. Enquanto vários livros de finanças fornecem código C ++ para preços de derivados e realizando cálculos numéricos, nenhum aborda o tópico a partir de uma perspectiva de projeto de sistema. Este livro será dividido em duas seções: técnicas de programação e tecnologia de sistema de negociação automatizada (ATS) e ensinar o design e o desenvolvimento de sistemas financeiros de forma absoluta usando o Microsoft Visual C ++ 2005. O MS Visual C ++ 2005 foi escolhido como o idioma de implementação principalmente porque a maioria das empresas comerciais e grandes bancos desenvolveram e continuam a desenvolver seus algoritmos proprietários no ISO C ++ e o Visual C ++ oferece a maior flexibilidade para incorporar esses algoritmos legados em sistemas operacionais. Além disso, o Framework e o ambiente de desenvolvimento fornecem as melhores bibliotecas e ferramentas para o rápido desenvolvimento dos sistemas de negociação. A primeira seção do livro explica o Visual C ++ 2005 em detalhes e concentra-se no conhecimento de programação requerido para o desenvolvimento automatizado do sistema de negociação, incluindo design orientado a objetos, delegados e eventos, enumerações, geração aleatória de números, temporização e temporizadores e gerenciamento de dados com STL e coleções. Além disso, uma vez que o código do legado e o código de modelagem nos mercados financeiros são feitos em ISO C ++, este livro analisa em vários tópicos avançados relacionados ao gerenciamento de memória gerenciado / não gerido / COM e à interoperabilidade. Além disso, este livro fornece dezenas de exemplos que ilustram o uso da conectividade de banco de dados com ADO e um tratamento extensivo de SQL e FIX e XML / FIXML. Tópicos avançados de programação, como encadeamento, soquetes, bem como o uso de C ++ para se conectar ao Excel também são discutidos extensivamente e são suportados por exemplos. A segunda seção do livro explica preocupações tecnológicas e conceitos de design para sistemas de negociação automatizados. Especificamente, os capítulos são dedicados a lidar com feeds de dados em tempo real, gerenciando pedidos no livro de pedidos de câmbio, seleção de posição e gerenciamento de riscos. Um. dll está incluído no livro que irá emular a conexão com uma API industrial amplamente utilizada (XTAPI da Trading Technologies, Inc.) e fornecer maneiras de testar algoritmos de gerenciamento de posição e ordem. Os padrões de design são apresentados para sistemas de tomada de mercado baseados em análises técnicas, bem como em sistemas de produção de mercado que utilizam spreads intermarket. À medida que todos os capítulos giram em torno de programação de computadores para engenharia financeira e desenvolvimento de sistemas de negociação, este livro educará comerciantes, engenheiros financeiros, analistas quantitativos, estudantes de finanças quantitativas e até programadores experientes em questões tecnológicas que giram em torno do desenvolvimento de aplicações financeiras em uma Microsoft ambiente e construção e implementação de sistemas e ferramentas de negociação em tempo real.
Características principais.
Ensina concepção e desenvolvimento de sistemas financeiros desde o início usando o Microsoft Visual C ++ 2005.
Fornece dezenas de exemplos que ilustram as abordagens de programação no livro.
Leitores.
Audiência primária: engenheiros financeiros, analistas quantitativos, programadores em empresas comerciais; estudantes de pós-graduação em cursos e programas de engenharia financeira e mercados financeiros.
Rever.
"Construir sistemas automatizados de negociação é uma leitura obrigatória para qualquer pessoa que esteja desenvolvendo sistemas de negociação algorítmica profissional. Ele traz todos os aspectos do design, funcionalidade e implementação do sistema em tempo real em um foco passo a passo claro. Este livro será um manual de referência de primeira escolha para o programador profissional sério no desenvolvimento do sistema de comércio ". - Russell Wojcik, Membro da CME e CBOT, Chefe da Concentração de Estratégia de Negociação, Illinois Institute of Technology "Este livro é um excelente guia para quem está interessado no desenvolvimento de aplicativos comerciais automáticos ou semi-automáticos. Ben cobre o conhecimento de programação necessário para desenvolver o sucesso aplicativos de negociação. Um deve ter para os comerciantes entrar na programação e os programadores entrarem em negociação. Ele também servirá como uma referência útil para o desenvolvimento de ferramentas comerciais mais sofisticadas ". - Sagy P. Mintz, Vice-Presidente, Trading Technologies, Inc.
Avaliações e avaliações.
Solicitar cotação.
Isenção de imposto.
Produtos & amp; Soluções R & amp; D Soluções Soluções Clínicas Plataformas de Pesquisa Pesquisa Inteligência Serviços de Educação Autores Editores Revisores Bibliotecários Shop & amp; Descubra Livros e revistas Autor Webshop Sobre a Elsevier Sobre nós Elsevier Connect Carreiras Como podemos ajudar? Centro de Apoio.
Como podemos ajudar?
Como podemos ajudar?
Direitos autorais e cópia; 2017 Elsevier, exceto determinado conteúdo fornecido por terceiros.
Os cookies são usados por este site. Para recusar ou aprender mais, visite nossa página Cookies.
Pesquisa de visitantes de Elsevier.
Estamos sempre procurando maneiras de melhorar a experiência do cliente no Elsevier.
Gostaríamos de pedir-lhe um momento do seu tempo para preencher um breve questionário, no final da sua visita.
Sistemas de negociação automatizados para investidores experientes.
Stocks, ETF & # 8217; s, & # 038; Futuros estratégias de negociação algorítmica.
Em um mundo liderado por títulos, com computadores comerciais de alto nível que cuspiam ordens mais rapidamente do que qualquer um poderia responder a um rumor, fato ou novidade, o que é um comerciante ou investidor para fazer?
Invista em uma estratégia sistemática e disciplinada, como nossas Estratégias de Negociação Algoritmicas AlgoTrades. Com base em um intervalo de tempo de rodagem de seis meses, nossos sistemas de negociação algorítmica demonstraram uma forte correlação negativa com o mercado de ações durante as retrocessos e até mesmo os mercados ósseos plurianuais. *** Em outras palavras, durante um determinado período de seis meses, nossa negociação os sistemas tendem a aumentar sua conta de negociação, quando o mercado de ações está em declínio. Construímos nossos algoritmos para capturar tendências em vários mercados, como o índice S & P500, o índice Dax, ações individuais e o índice de volatilidade do evento ele. Usando futuros, trocados fundos negociados (ETFs), ou ações, podemos tirar o máximo proveito dos giros mensais do mercado de ações. Use nosso sistema de negociação algorítmica e você pode ter certeza de que você possui alguns dos melhores sistemas de negociação automatizados que trabalham para você. *
No comments:
Post a Comment